

Устройство контроля загрузки лифта УКЗ-ВТ

Руководство по эксплуатации

Республика Беларусь

Частное предприятие «Вектор Технологий». 223051, РБ, а.г. Колодищи, ул. Тюленина 10К, 3 этаж Тел./факс: +375 (17) 516-84-37 info@vec-tech.by www.vtlift.com

Российская Федерация

OOO "BEKTOP TEXHОЛОГИЙ СПБ" Тел: +7 (812) 910-16-55 info@vectech.ru, www.vtlift.com

Техподдержка

Тел. РБ: +375445474056, +375445474065 Тел. РФ: +79296363106, +79296363093

Приложение «Вектор Технологий» для наладчика

- ✓ Актуальные инструкции
- ✓ Ответы на вопросы
- ✓ Обратная связь

Содержание

1 Описание и работа	3
1.1 Описание и работа изделия	3
1.1.1 Назначение изделия	3
1.1.2 Техническая характеристика	3
1.1.3 Состав изделия	4
1.1.4 Устройство и работа	4
1.1.5 Средства измерения, инструмент и принадлежности	5
1.2 Описание и работа составных частей изделия	5
1.2.1 Блок контроля	5
1.2.2 Коробка соединительная	6
1.2.3 Тензодатчики	7
1.3 Маркировка	7
2 Использование по назначению	8
2.1 Эксплуатационные ограничения	8
2.2 Подготовка устройства к использованию	8
2.2.1 Меры безопасности при подготовке устройства к использовани	ю8
2.2.2 Механический монтаж	9
2.2.3 Электрический монтаж	13
2.2.4 Элементы управления и индикации	14
2.2.5 Меню	16
2.2.6 Настройка	18
2.3 Использование устройства	21
2.3.1 Меры безопасности при использовании	21
2.3.2 Порядок контроля работоспособности	21
1.1.2 Перечень ошибок устройства	21
3 Техническое обслуживание	22
4 Хранение	22
5 Транспортирование	22
6 Утилизация	22

Настоящее руководство по эксплуатации ФГЭЮ.1811.00.00.000 РЭ предназначено для ознакомления с устройством, принципом действия, техническими характеристиками, способом монтажа, условиями эксплуатации и настройкой устройства контроля загрузки лифта УКЗ-ВТ (далее по тексту - устройство) в составе станций управления лифтом, а также обзор диагностируемых неисправностей устройства. Данное руководство распространяется на модель УКЗ-ВТ.1.2 и УКЗ-ВТ.2.2.

Перед началом выполнения работ по монтажу, эксплуатации устройства, внимательно ознакомьтесь с настоящим руководством, а также убедитесь в том, что выполнены все рекомендации по монтажу и обеспечению безопасности, представленные в данном руководстве.

1 Описание и работа

1.1 Описание и работа изделия

1.1.1 Назначение изделия

Устройство контроля загрузки лифта предназначено для контроля степени загрузки кабины и передачи логических сигналов о степени загрузки кабины в систему управления лифтом.

1.1.2 Техническая характеристика

В таблице 1 указаны основные технические параметры.

Таблица 1– Технические параметры устройств

Наименование параметра	Значение
1 Напряжение питания переменного тока, В	230
2 Предельно допустимое значение отклонения напряжения от номинального, %	минус 15 –
	плюс 10
3 Номинальная частота, Гц	50
4 Параметры релейного выхода:	
- тип выхода	«сухой контакт»
- количество релейных выходов	1-3
- коммутируемое напряжение релейного выхода, В	24
- коммутируемый ток релейного выхода, А, не более	1
5 Максимальная измеряемая нагрузка на тензодатчики, кг	до 9900
6 Параметры тензодатчиков:	
- количество тензодатчиков, шт	1 - 8
- напряжение питания постоянного тока, В	5 - 12
- длина кабеля тензодатчика под пол кабины, м, не более	2,5
- длина кабеля тензодатчика на канат, м, не более	0,5
7 Потребляемая мощность, В·А, не более	5,0
8 Класс защиты от поражения электрическим током по	
FOCT 12.2.007.0	II
9 Степень защиты по ГОСТ 14254, не менее:	
- блока контроля	IP20
- тензодатчика под пол кабины	IP67
- тензодатчика на канат	IP65
- коробки соединительной	IP20

10 Масса, кг, не более	
- блока контроля	0,3
- тензодатчика под пол кабины	0,85
- тензодатчика на канат	0,08
- коробки соединительной	0,1
11 Габаритные размеры (высота х ширина х глубина), мм, не более	
- блока контроля	90x95x28
- тензодатчика под пол кабины	45x190x50
- тензодатчика на канат	30,5x130x28
- коробки соединительной	41x75x24

1.1.3 Состав изделия

- блок контроля;
- тензометрические датчики (далее тензодатчики);
- коробка соединительная (в зависимости от модификации может отсутствовать);
 - руководство по эксплуатации;
 - паспорт.

1.1.4 Устройство и работа

Работа устройства заключается в измерении веса кабины лифта и подачи соответствующих сигналов в станцию управления лифтом.

Устройство контроля загрузки лифта обеспечивает:

- выдачу информационных сигналов в станцию управления лифтом (дискретный выход типа «сухой контакт»):
 - 1) сигнал наличия загрузки кабины лифта, 15 кг;
 - 2) сигнал загрузки, соответствующий 50% номинальной грузоподъёмности лифта;
 - 3) сигнал загрузки, соответствующий 90% номинальной грузоподъёмности лифта;
 - 4) сигнал перегрузки, соответствующий 110% номинальной грузоподъёмности лифта, но не менее чем на 75 кг превышающий грузоподъёмность лифта.
 - обнуление значения веса незагруженного купе кабины лифта;
 - выдачу информации о весе кабины через аналоговый выход 0...10VDC;
 - сохранение информации о зафиксированных уставках;
- визуализацию на панели индикации контроллера значений веса кабины лифта в килограммах и процентном выражении к грузоподъёмности лифта;
 - визуализацию наличия нагрузки (15 кг, 50%, 90%, 110%);
 - блокировку выходных контактов реле при движении кабины.

1.1.5 Средства измерения, инструмент и принадлежности

Проверка электрических цепей устройства контроля загрузки лифта и контроль напряжения в них следует производить с помощью электроизмерительных приборов общего назначения.

Проверка выдачи информационных сигналов проводится путём помещения в кабину лифта грузов установленной массы.

1.2 Описание и работа составных частей изделия

1.2.1 Блок контроля

Блок контроля предназначен для измерения степени загрузки кабины лифта, и передачи информации о степени загрузки кабины в станцию управления лифтом.

В таблице 2 указаны функции клемм устройства.

Таблица 2 – Функции клемм устройства

Обозначение клеммы	Функция	Примечания					
Входные клеммы							
XC	Общий контакт сигнала удержания перегрузки						
X0	Входной контакт сигнала удержания перегруз-ки	2028 В постоянного тока					
AV+	Напряжение питания (+) датчика	Lines spends					
AV-	Напряжение питания (-) датчика	Цвет провода					
AS+	Напряжение сигнала (+) датчика	зависит от типа					
AS-	Напряжение сигнала (-) датчика	выбранного датчика					
L	Напряжение питания 230 В переменного тока	-					
N	· · ·						
=	≐ Функциональное заземление						
	Выходные клеммы						
COM0	Общая клемма Реле 1	Функция реле назначается в пара-					
NO0	Контакт НО Реле 1	метре Р02					
NC0	Контакт НЗ Реле 1						
COM1	Общая клемма Реле 2	Функция реле назначается в пара-					
NO1	Контакт НО Реле 2	метре Р04					
NC1	Контакт НЗ Реле 2						
COM2	Общая клемма Реле 3	Функция реле назначается в пара-					
NO2	Контакт НО Реле 3	метре Р06					
NC2	Контакт НЗ Реле 3						
AO+	Выход аналогового сигнала о состоянии веса кабины (010VDC)						
AO-	Общая клемма аналогового сигнала						

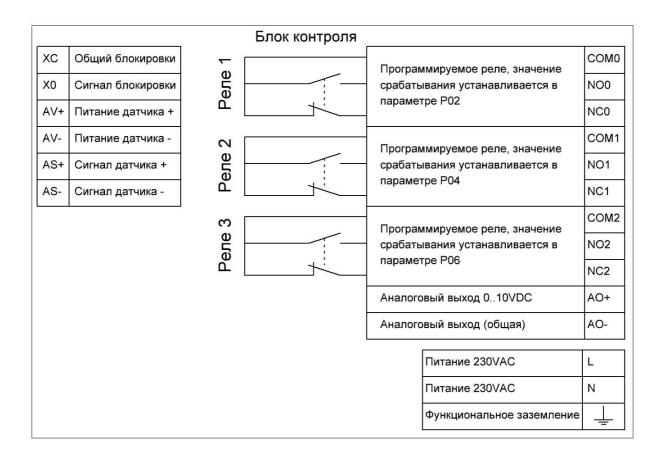


Рисунок 1 - Функции клемм

Допускается программирование одной и той же функции на несколько реле.

При активном сигнале блокировки X0 сигналы на релейных выходах устройства остаются неизменными при изменении нагрузки.

Функция входа X0 активируется с помощью параметра P11. Входное напряжение: 20...28 В постоянного тока.

Клеммы АО+ и АО- служат для подключения аналогового выхода 0..10VDC, передающего состояние веса кабины. Максимальное значение напряжения соответствует значению веса в параметре Р01.

К клеммам AV+, AV-, AS+, AS- должны быть подключены провода с соответствующей маркировкой. При неправильном подключении возможен выход из строя устройства. Не помещайте сигнальные кабели рядом с силовыми кабелями питания.

Перед эксплуатацией в штатном режиме убедитесь, что питающее напряжение составляет 230 В переменного тока.

1.2.2 Коробка соединительная

Коробка соединительная предназначена для подключения тензодатчиков к блоку контроля. Имеет четыре канала для подключения тензодатчиков. Для подклю-

чения к блоку контроля выведен кабель длинной 2м с соответствующей маркировкой на проводах. Может применяться от одной до двух коробок соединительных.

В комплектации с одним тензодатчиком коробка соединительная может отсутствовать.

1.2.3 Тензодатчики

Предназначены для преобразования усилия, создаваемого приложенным грузом, в электрический сигнал, пропорциональный нагрузке. Может применяться от одного до шести датчиков.

1.3 Маркировка

Структура условного обозначения приведена на рисунке 2.

УКЗ -	BT .	X.	X .	XX	X	X .	У3	УКЗ устройство контроля загрузки лифта
								ВТ - индекс производителя
								1 - Тензодатчики под пол кабины
								2 - Тензодатчики на канат
								X - номинальное напряжение питания:
								0 - 24 В постоянного/переменного тока;
								1 - 110 В переменного тока;
								2 - 230 В переменного тока
								XX - максимальное значение нагрузки на тензо- датчики, кг / 100
								X - количество тензодатчиков, шт
								Х - порт связи
								0 - 4 релейных выхода
								1 - 3 релейных выхода
								2 - 2 релейных выхода
								3 - 4 релейных выхода и порт связи
								4 - 3 релейных выхода и порт связи
								5 - 2 релейных выхода и порт связи
								9 - порт связи
								У3 - вид климатического исполнения по ГОСТ 15150

Рисунок 2 – Структура условного обозначения

2 Использование по назначению

2.1 Эксплуатационные ограничения

В таблице 3 указаны условия эксплуатации.

Таблица 3 - Условия эксплуатации

Параметр	Условия
Место установки	Закрытое помещение;
место установки	высота над уровнем моря – до 2000 м
Температура окружающей среды	-5 °C+45 °C
Влажность	Не более 80% при температуре 20 °C
Температура хранения	2 (C) πο ΓΟCT 15150
	Атмосфера типа II ГОСТ 15150-69, при этом должна быть:
	- взрывобезопасной
Окружающая зона	- пожаробезопасной
	- не содержащей агрессивных газов и паров в концентрациях, снижаю-
	щих параметры изделия

2.2 Подготовка устройства к использованию

2.2.1 Меры безопасности при подготовке устройства к использованию

При проведении работ по монтажу, наладке и эксплуатации устройства обязательно соблюдение требований ГОСТ 12.2.007.0-75, ТКП 181-2009, ПУЭ, противопожарных норм для электроустановок, правил устройства и безопасной эксплуатации лифтов и строительных грузопассажирских подъемников, а также эксплуатационной документации.

Не допускать попадания посторонних предметов (например, обрезков проводов или металлических стружек) внутрь устройства во время монтажа и строительных работ. Это может привести к повреждению устройства.

Применение недопустимых методов выполнения электрических соединений может привести к нарушению работы устройства из-за некачественного электрического контакта между проводами и клеммами.

2.2.2 Механический монтаж

Габаритные размеры блока контроля (в мм) изображены на рисунке 3.

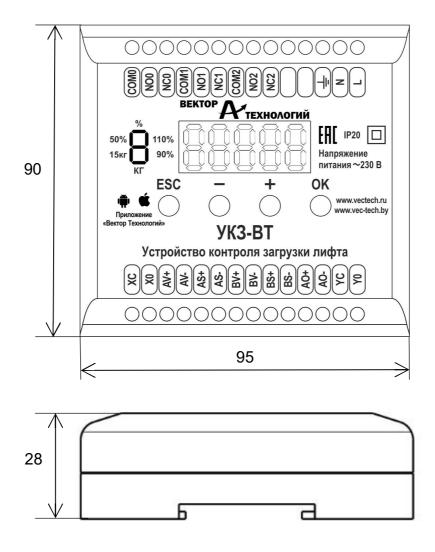


Рисунок 3 – Габаритные размеры блока контроля (в мм)

На корпусе устройства с тыльной стороны предусмотрена возможность монтажа на DIN-рейку. Способ монтажа изображен на рисунке 4.

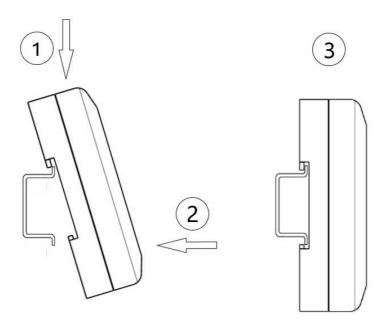
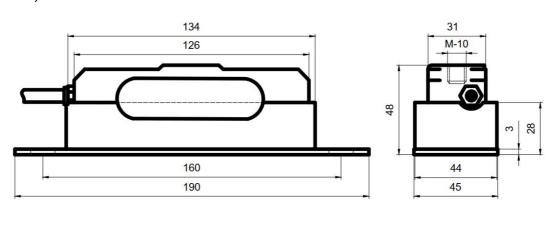



Рисунок 4 — Способ монтажа на DIN-рейку

Устройство контроля загрузки лифта может поставляться с тензодатчиками, устанавливаемыми под пол кабины (рисунок 5), либо с канатными тензодатчиками (рисунок 7).

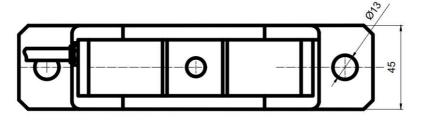


Рисунок 5 – Размер тензодатчиков, устанавливаемых под пол кабины (в мм)

Допускается прикладывать только вертикальное усилие (сверху вниз, см. рисунок 6). Отклонение вектора усилия от вертикали не допускается.

Эксплуатация незакрепленного к поверхности тензодатчика может привести к его повреждению и выходу из строя.

Не допускается зажимать крепежную шпильку с усилием, т. к. это приводит к деформации тензосопротивления и ложным показаниям при измерении. Рекомендуется закручивать шпильку до конца, а потом откручивать ее на один оборот.

Убедитесь, что все датчики расположены параллельно плоскости пола и на них оказывается равномерное давление (нету перекоса пола).

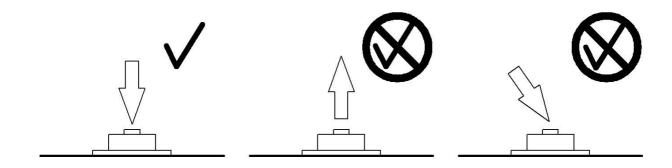


Рисунок 6 — Прикладываемое к датчику усилие

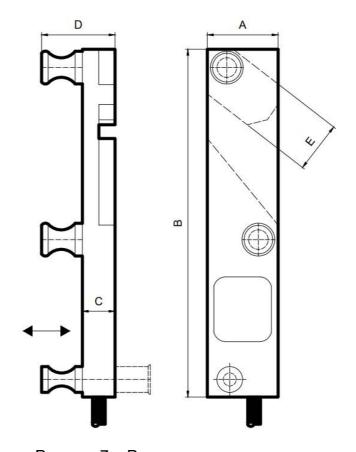


Рисунок 7 – Размер канатных тензодатчиков

Таблица 4 – Размер канатных тензодатчиков

Диаметр каната	Измеряемая на-	А, мм	В, мм	С, мм	D, мм	Е, мм
	грузка, кг					
4 мм	150	12,5	70	8	14	10
5 мм	200	18	80	10	18,5	14
6 мм	250	20	87	10	18,5	14
6,5 мм	250	20	87	10	18,5	14
8 мм	350	20	87	10	21	14
9 мм	400	20	87	10	21	14
10 мм	450	22	97	10	22,5	15,5
11 мм	550	22	97	10	22,5	15,5
12 мм	650	24	107	10	25	17,5
13 мм	800	24	107	10	25	17,5
14 мм	950	28	110	12	30,5	-
15 мм	1100	28	110	12	30,5	-
16 мм	1250	28	130	12	30,5	-

Рисунок 8 — Способ монтажа канатных тензодатчиков при помощи гаечного ключа или специального инструмента

2.2.3 Электрический монтаж

Количество подключаемых тензодатчиков может быть от 1 до 8 шт. Количество соединительных коробок зависит от числа подключаемых тензодатчиков. Комплектация с одним датчиком может поставляется без коробки соединительной. При использовании двух коробок соединительных, их подключение к блоку контроля производится параллельно (по 2 провода в одну клемму). На рисунке 9 изображена схема подключения тензодатчиков.

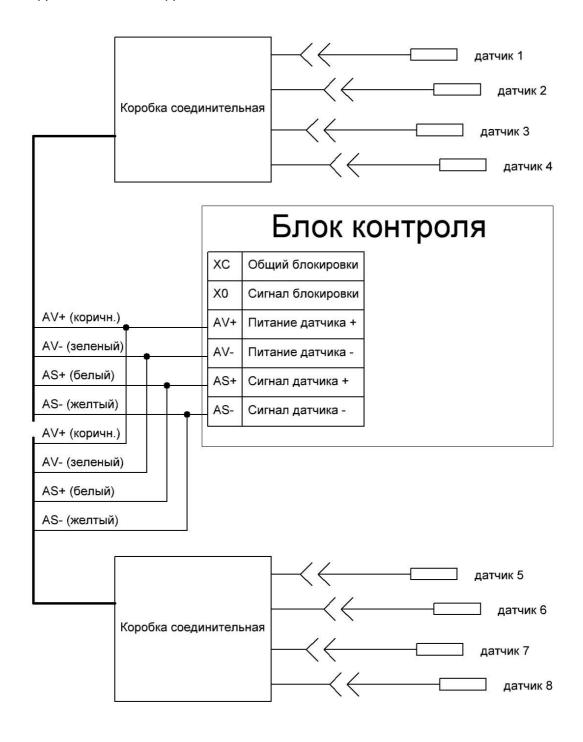


Рисунок 9 – Схема подключения тензодатчиков

2.2.4 Элементы управления и индикации

Устройство имеет индикаторы, дисплей для отображения данных и кнопки для управления, редактирования параметров.

На рисунке 10 изображены дисплей, индикаторы и кнопки.

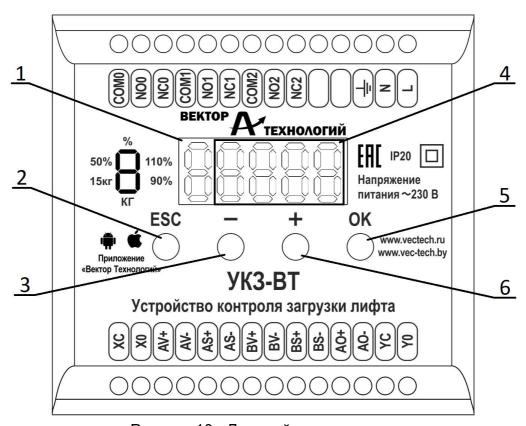


Рисунок 10 - Дисплей, индикаторы и кнопки

В таблице 5 описаны функции дисплея, индикаторов и кнопок блока контроля.

Таблица 5 - Функции дисплея, индикаторов и кнопок

Nº	Вид	Наименование	Описание
1		Индикатор со- стояния	Индикатор наличия нагрузки (15 кг, 50%, 90%, 110%). Так же указывает в каких единицах измерения отображается загрузка кабины (килограммы или проценты от номинальной грузоподъемности)
2	ESC	Кнопка «ESC»	Нажатием кнопки происходит выход из редактирования параметра без сохранения, а также возврат к предыдущему пункту меню.
3	-	Кнопка « - »	Предназначена для доступа к параметрам и их редактирования. Нажатием на кнопку происходит сдвиг вниз по меню параметров. Также, в режиме редактирования параметра уменьшается значение выбранного разряда. Долгое нажатие на кнопку «-» в режиме редактирования параметра обеспечит переход на разряд вправо.
4	8888	Панель индика- ции	Отображение номеров параметров, значений и т.п.
5	OK	Кнопка «ОК»	Нажатием кнопки происходит вход в режим редактирования

			параметра, а также в меню устройства. Нажатием кнопки в
			режиме редактирования параметра подтверждается выбран-
			ное значение.
6			Предназначена для доступа к параметрам и их редактирова-
	+	Кнопка « + »	ния. Нажатием на кнопку происходит сдвиг вверх по меню
			параметров. Также, в режиме редактирования параметра
			увеличивается значение выбранного разряда. Долгое нажа-
			тие на кнопку «+» в режиме редактирования параметра
			обеспечит переход на разряд влево.

На рисунке 11 изображён индикатор состояния. Значение каждой ячейки этого индикатора указано в таблице 6.

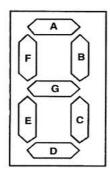


Рисунок 11 – Индикатор состояния

Таблица 6 – Функции индикатора состояния

Обозначение ячейки	Выполняемая функция
Α	Отображение значений в %
D	Отображение значений в кг
Е	Индикация наличия легкой нагрузки
F	Индикация наличия средней нагрузки
С	Индикация наличия тяжелой нагрузки
В	Индикация наличия перегрузки

В таблице 7 представлены примеры отображаемых значений на дисплее блока контроля.

Таблица 7 - Примеры отображаемых значений

Отображаемое зна- чение	Пояснение			
PCII	Установка параметра			
	Установка параметра тарирования			
0095	Значение параметра			
	Готов к запоминанию состояния системы без нагрузки (обнуление)			
H	Готов к запоминанию состояния системы с номинальной нагрузкой			
ECII	Код ошибки			

2.2.5 Меню

1.1.1.1 Структура меню

На рисунке 12 представлена структура меню блока контроля.

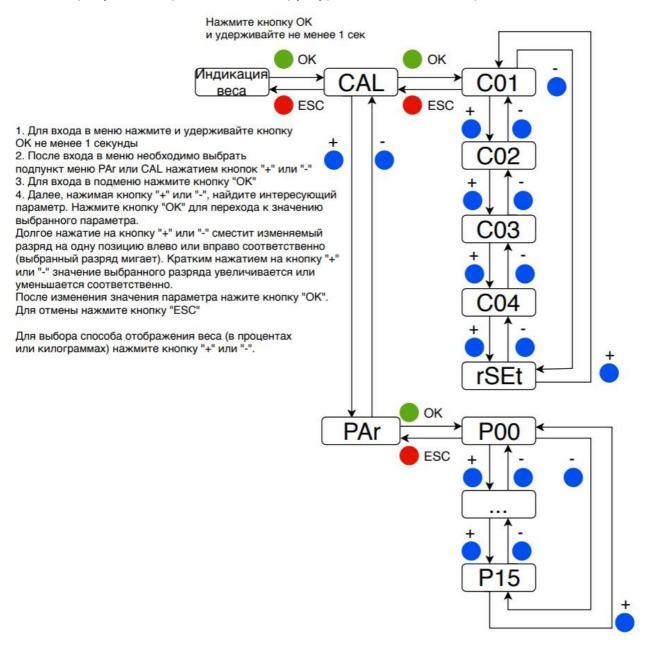


Рисунок 12 - Структура меню

1.1.1.2 Вход в меню

Для входа в меню нажмите кнопку ОК и удерживайте не менее 1 секунды. На экране отобразится CAL.

2.2.5.1 Изменение значение параметра

Для выбора параметра после входа в меню согласно п. 2.2.5.1 необходимо:

- Выбрать кнопками «+» или «-» подпункт меню CAL или PAr (для параметров тарирования- CAL, для параметров инициализации - PAr);

YECTOR OF TECHNOLOGIES

- Нажать кнопку ОК;
- Далее, нажимая кнопку «+» или «-», найти интересующий параметр;
- Нажать кнопку ОК. Отобразится значение выбранного параметра.
- Изменить значение параметра. Значение в выбранном разряде меняется кратким нажатием на кнопки «+» или «-». Разряд меняется долгим нажатием на кнопки «+» или «-».

1.1.1.3 Описание параметров

Описание параметров представлены в таблице 8.

Таблица 8 – Описание параметров (PAr)

Пара- метр	Наименование	Описание	Установка
POO	Версия программ- ного обеспечения	Отображает версию программного обеспечения.	_
POI	Номинальная на- грузка	Устанавливает номинальную нагрузку (грузо- подъёмность кабины лифта) в кг.	По умол.: 400 кг Мин: 0100 кг Макс: 5000 кг
P02	Функция Реле 1	Устанавливает уровень нагрузки, при котором срабатывает Реле 1: 0: загрузка кабины превышает 15 кг 1: загрузка кабины превышает 50% от параметра Р01 «номинальная нагрузка» 2: загрузка кабины превышает 90% от параметра Р01 «номинальная нагрузка» 3: загрузка кабины превышает 110% от параметра Р01 «номинальная нагрузка»	По умол.: 1 Мин.: 0 Макс.:3
P03	Состояние контактов Реле 1	Параметр определяет состояние контактов при срабатывании Реле 1. 0: контакт замыкается. 1: контакт размыкается.	По умол.: 0 Мин: 0 Макс: 1
POH	Функция Реле 2	Устанавливает уровень нагрузки, при котором срабатывает Реле 2: 0: загрузка кабины превышает 15 кг 1: загрузка кабины превышает 50% от параметра Р01 «номинальная нагрузка» 2: загрузка кабины превышает 90% от параметра Р01 «номинальная нагрузка» 3: загрузка кабины превышает 110% от параметра Р01 «номинальная нагрузка»	По умол.: 2 Мин.: 0 Макс.:3
P05	Состояние контактов Реле 2	Параметр определяет состояние контактов при срабатывании Реле 2. 0: контакт замыкается. 1: контакт размыкается.	По умол.: 0 Мин: 0 Макс: 1
P06	Функция Реле 3	Устанавливает уровень нагрузки, при котором срабатывает Реле 3: 0: загрузка кабины превышает 15 кг 1: загрузка кабины превышает 50% от параметра Р01 «номинальная нагрузка» 2: загрузка кабины превышает 90% от параметра Р01 «номинальная нагрузка» 3: загрузка кабины превышает 110% от параметра Р01 «номинальная нагрузка»	По умол.: 3 Мин.: 0 Макс.:3

POT	Состояние контактов Реле 3	Параметр определяет состояние контактов при срабатывании Реле 3. 0: контакт замыкается. 1: контакт размыкается.	По умол.: 0 Мин: 0 Макс: 1
PII	Блокировка изменения состояний выходных реле	Устанавливается режим работы входа X01. 0: выходные реле блокируются при высоком уровне на входе X0. 1: выходные реле блокируются при низком уровне на входе X0	По умол.: 0 Мин: 0 Макс: 1
PI6	Масштабирование аналогового выхода	Происходит смещение значения напряжения на выходе AO+ AO-, соответствующего номинальной нагрузке (P01).	По умол.: 908 Мин: 100 Макс: 1000

1.1.1.4 Описание параметров тарирования

Описание параметров тарирования (CAL) представлены в таблице 9.

Таблица 9 – Описание параметров тарирования (CAL)

				
Параметр	Название	Описание		
	Функция тарирования	Данная функция используется для обнуления показаний		
<u> </u>	без нагрузки (обнуле-	массы пустой кабины при проведении процедуры быстрого		
	ние)	или полного тарирования.		
E02	Функция тарирования	Данная функция записывает показания датчиков при за-		
	с нагрузкой	грузке кабины известным весом.		
C03	Коэффициент наклона характеристики датчи- ков	Позволяет вручную задавать коэффициент наклона характеристики датчиков.		
		Данная функция устраняет колебания показаний массы пу-		
	Функция	стой кабины.		
	автообнуления	00 – автообнуление не активно		
	,	01 – автообнуление активно (по умолчанию)		
RSET	Сброс к заводским на- стройкам	Позволяет вернуть значения всех параметров к заводским.		

2.2.6 Настройка

Для проведения настройки необходимо:

- 1) Ввести номинальную нагрузку в параметр Р01 (п. 2.2.6.1).
- 2) При необходимости изменить значения остальных параметров (п. 2.2.5.2).
- 3) Далее необходимо провести процедуру тарирования.

Существуют две процедуры тарирования устройства:

- процедура быстрого тарирования (п. 2.2.6.2);
- процедура полного тарирования (п. 2.2.6.3).

При вводе устройства в эксплуатацию необходимо провести процедуру быстрого тарирования.

Если по каким-либо причинам после процедуры быстрого тарирования устройство не прошло проверку или в случае выхода из строя тензодатчика (тензодатчиков), блока контроля с последующей их заменой, необходимо провести процедуру полного тарирования.

После проведения любой из процедур тарирования необходимо проверить срабатывание реле в зависимости от заданных им функций.

2.2.6.1 Процедура ввода номинальной нагрузки

Для ввода номинальной нагрузки необходимо:

- согласно п. 2.2.5.1 зайти в меню.

- согласно п. 2.2.5.2 изменить значение параметра Р01.
- после изменения значения параметра нажмите ОК.

На рисунке 13 изображена процедура ввода номинальной нагрузки.

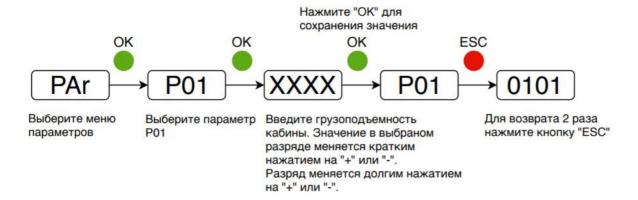


Рисунок 13 – Процедура ввода номинальной нагрузки

1.1.1.5 Процедура быстрого тарирования

Согласно п. 2.2.5.1 зайти в меню. Убедиться, что отображается подменю САL.

Далее необходимо произвести обнуление, предварительно разгрузив кабину. Для этого:

- нажать кнопку ОК. Отобразится параметр С01;
- нажать кнопку ОК. Отобразится ---L. Убедиться в том, что кабина без нагрузки;
- нажатие кнопки ОК приведет к началу отсчета таймера. После окончания отсчета произойдет обнуление;
 - для выхода из меню нажать кнопку ESC два раза.

На рисунке 14 изображена процедура быстрого тарирования.

Рисунок 14 - Процедура быстрого тарирования

1.1.1.6 Процедура полного тарирования

Для выполнения процедуры полного тарирования необходимо обнулить устройство при разгруженной кабине, затем, не выключая питания устройства, нагрузить кабину грузом, значение которого составляет не менее 50% от грузоподъёмности лифта. Сделать это можно следующим образом:

- Согласно п. 2.2.5.1 зайдите в меню. Убедитесь, что отображается подменю CAL.
- Далее необходимо произвести обнуление, предварительно разгрузив кабину. Для этого:
 - 1) Нажать кнопку ОК. Отобразится параметр С01.
 - 2) Нажать кнопку ОК. Отобразится --- L. Убедиться в том, что кабина без нагрузки.
 - 3) Нажатие кнопки ОК приведет к началу отсчета таймера. После окончания отсчета произойдет обнуление. Отобразится параметр С01.
 - Нажать кнопку «+». Отобразится параметр С02.
- Нажать клавишу ОК. Отобразится вес груза в кабине. Необходимо нагрузить кабину грузом известной массы и внести ее корректное значение. Нажать клавишу ОК.
 - Отобразится ---Н.
- Нажатие кнопки ОК приведет к началу отсчета таймера. После окончания отсчета произойдет тарирование.
 - Для выхода из меню нажать кнопку ESC два раза.

На рисунке 15 изображена процедура полного тарирования.

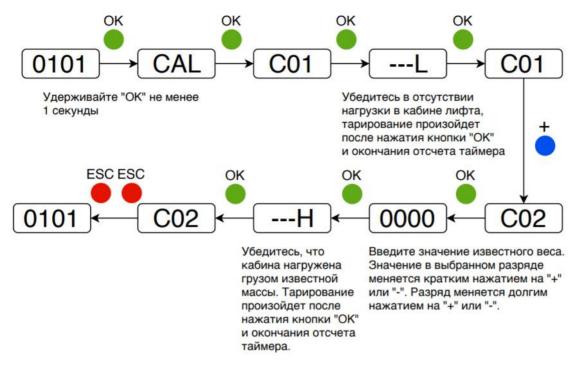


Рисунок 15 - Процедура полного тарирования.

1.1.1.7 Возврат к заводским настройкам

Для возврата к заводским настройкам необходимо выполнить следующие действия:

- согласно п. 2.2.5.1 зайти в меню. Убедитесь, что высвечивается подменю CAL.
 - нажать кнопку ОК.
 - нажать кнопку «-». На дисплее отобразится rSEt.
- нажать кнопку ОК и удерживать не менее 1 секунды для сброса всех параметров.

На рисунке 16 изображена процедура сброса к заводским настройкам.

Рисунок 16 - Возврат к заводским настройкам

2.3 Использование устройства

2.3.1 Меры безопасности при использовании

К работе с устройством контроля загрузки лифта допускается персонал, не моложе 18-летнего возраста, прошедший медицинский осмотр, имеющий соответствующую профессию, должность и квалификацию, прошедший инструктаж и стажировку на рабочем месте, знающий устройство и принцип работы электрооборудования.

Эксплуатация устройства должна производится в соответствии с ТКП 181, ТКП 339, ТКП 427, Правилами устройства электроустановок (ПУЭ), Правилами по обеспечению промышленной безопасности при эксплуатации лифтов и строительных грузопассажирских подъемников, а так же эксплуатационной документации.

Ремонтные работы производить только при полном отключении оборудования от питающей сети.

2.3.2 Порядок контроля работоспособности

После тарирования необходимо проверить соответствие нагрузки, отображаемой на дисплее блока контроля в килограммах и процентах с нагрузкой, приложенной к датчикам. А также проверить срабатывание реле, наличие звукового сигнала при перегрузке.

1.1.2 Перечень ошибок устройства

В таблице 10 представлены коды ошибок и способы их разрешения.

Таблица 10 - Коды ошибок

Код	Возможные неисправности	Метод устранения
E01	Датчики установлены некорректно, неверное подключение датчиков или недостаточная нагрузка при процедуре полного тарирования	Проверить установку датчиков и их подключение; увеличить нагрузку при процедуре полного тарирования
E02	При процедуре полного тарирования не произведено обнуление параметром C01	Провести заново процедуру полного тарирования согласно п. 2.2.6.2
E03	Масса пустой кабины превышает 1400 кг	Во время процедуры тарирования при обнулении параметром С01 убедиться, что в кабине отсутствует нагрузка

E04	Отсутствует соответствующая нагрузка во время выполнения процедуры полного тарирования, указанная в параметре C02	Провести заново процедуру полного тарирования согласно п. 2.2.6.2 и установить корректное значение C02		
E05	Ошибка при процедуре тарирования	Провести заново процедуру полного тарирования согласно п. 2.2.6.2		
E06	Ошибка памяти	Сделать возврат к заводским настройкам согласно п. 2.2.6.3		
E07	Превышена максимально измеряемая нагрузка	Убедитесь, что сумма параметра Р01 (номинальная грузоподъёмность) и массы пустой кабины не превышает максимальную измеряемую нагрузку на тензодатчики		

3 Техническое обслуживание

Техническое обслуживание устройства контроля загрузки лифта УКЗ-ВТ заключается в регулярной проверке надежности контактов и соединений.

Порядок технического обслуживания:

- проверьте надежность крепления кабелей в винтовых зажимах;
- при необходимости подтяните винты;
- удалите загрязнения с поверхности устройства.

4 Хранение

Условия хранения - 2 (C) по ГОСТ 15150-69.

Допустимый срок хранения в упаковке поставщика до ввода в эксплуатацию – 1 год.

5 Транспортирование

Условия транспортирования в части воздействия механических факторов - С по ГОСТ 23216-78, в части климатических факторов - по группе условий хранения 4 (Ж2) по ГОСТ 15150-69 (кроме районов Крайнего Севера и приравненных к ним местностям по ГОСТ 15846-2002).

6 Утилизация

По окончании срока службы производится утилизация в порядке, установленном на предприятии.

Для заметок

Беларусь

Частное предприятие «Вектор Технологий».

РБ, а.г. Колодищи, ул. Тюленина 10К, 3 этаж, 223051.

Тел./факс: +375 (17) 516-84-37,

E-mail:info@vec-tech.by Сайт: www.vtlift.com

Россия

ООО "ВЕКТОР ТЕХНОЛОГИЙ СПБ".

Тел: +7 (812) 910-16-55 E-mail: info@vectech.ru Сайт: www.vtlift.com

Техподдержка.

Тел. РБ: +375445474056 +375445474065 Тел. РФ: +79296363106 +79296363093

